A unique prototype of microbial life designed on actual Martian material

Experimental microbially assisted chemolithotrophy provides an opportunity to trace the putative bioalteration processes of the Martian crust. A study on the Noachian Martian breccia Northwest Africa (NWA) 7034, composed of ancient (ca. 4.5 Gyr old) crustal materials from Mars has delivered a unique prototype of microbial life experimentally designed on actual Martian material. As the researchers show in the current issue…

Researchers investigate the brightest cluster galaxy in MACS 1931.8-2635

Using Very Large Telescope (VLT) and Atacama Large Millimeter/submillimeter Array (ALMA), researchers from the University of Vienna, Austria, and elsewhere have investigated the brightest cluster galaxy (BCG) in a massive galaxy cluster known as MACS 1931.8-2635. Results of the study, published January 28 on arXiv.org, deliver important information about the nature of this BCG. Source: https://phys.org/news/2021-02-brightest-cluster-galaxy-macs-.html…

A question of quantum reality

Physicist Reinhold Bertlmann of the University of Vienna, Austria has published a review of the work of his late long-term collaborator John Stewart Bell of CERN, Geneva in EPJ H. This review, “Real or Not Real: that is the question,” explores Bell’s inequalities and his concepts of reality and explains their relevance to quantum information and its applications. …

Quantum simulation of quantum crystals

The quantum properties underlying crystal formation can be replicated and investigated with the help of ultracold atoms. A team led by Dr. Axel U. J. Lode from the University of Freiburg’s Institute of Physics has now described in the journal Physical Review Letters how the use of dipolar atoms enables even the realization and precise measurement of structures that have not…

Antibiotic matter waves: The quantum wave nature of a complex antibiotic polypeptide

One of the central tenets of quantum mechanics is the wave-particle duality. It tells us that even massive objects behave like both particles and waves. A number of previous experiments have shown this for electrons, neutrons, atoms and even large molecules. Quantum theory maintains that this is a universal property of matter. However, it had been notoriously difficult to extend this…

A quantum of solid: A glass nanoparticle in the quantum regime

Researchers in Austria have used lasers to levitate and cool a glass nanoparticle into the quantum regime. Although it is trapped in a room-temperature environment, the particle’s motion is solely governed by the laws of quantum physics. The team of scientists from the University of Vienna, the Austrian Academy of Sciences and the Massachusetts Institute of Technology (MIT) published their new…

Meet the microorganism that likes to eat meteorites

At least one type of microbe on Earth not only likes to eat meteorites but actually prefers them as a food source, according to a new international scientific study. Source: https://earthsky.org/earth/microorganism-m-sedula-likes-to-eat-meteorites…

The fast dance of electron spins

Metal complexes show a fascinating behavior in their interactions with light, which for example is utilized in organic light emitting diodes, solar cells, quantum computers, or even in cancer therapy. In many of these applications, the electron spin, a kind of inherent rotation of the electrons, plays an important role. Recently, the chemists Sebastian Mai and Leticia González from the Faculty…

2000 atoms in two places at once: A new record in quantum superposition

The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna in collaboration with the University of Basel. Hot, complex molecules composed of nearly two thousand atoms were brought into a quantum superposition and made to interfere. By confirming this phenomenon—”the heart of quantum mechanics,” in Richard Feynman’s…

Quantum gravity’s tangled time

The theories of quantum mechanics and gravity are notorious for being incompatible, despite the efforts of scores of physicists over the past fifty years. However, recently an international team of researchers led by physicists from the University of Vienna, the Austrian Academy of Sciences as well as the University of Queensland (AUS) and the Stevens Institute of Technology (U.S.) have combined…