Quantum tunneling in graphene advances the age of terahertz wireless communications

Scientists from MIPT, Moscow Pedagogical State University and the University of Manchester have created a highly sensitive terahertz detector based on the effect of quantum-mechanical tunneling in graphene. The sensitivity of the device is already superior to commercially available analogs based on semiconductors and superconductors, which opens up prospects for applications of the graphene detector in wireless communications, security systems, radio…

Quantum mysteries: Probing an unusual state in the superconductor-insulator transition

Scientists at Tokyo Institute of Technology (Tokyo Tech) approach the two decade-old mystery of why an anomalous metallic state appears in the superconductor-insulator transition in 2-D superconductors. Through experimental measurements of a thermoelectric effect, they found that the quantum liquid state of quantum vortices causes the anomalous metallic state. The results clarify the nature of the transition and could help in…

The First Room-Temperature Superconductor Has Finally Been Found

Joe2020 shares a report from Science News: Now, scientists have found the first superconductor that operates at room temperature — at least given a fairly chilly room. The material is superconducting below temperatures of about 15 degrees Celsius (59 degrees Fahrenheit), physicist Ranga Dias of the University of Rochester in New York and colleagues report October 14 in Nature. The team’s…

Compact Nuclear Fusion Reactor Is ‘Very Likely To Work,’ Studies Suggest

JoshuaZ writes: Recent research into the Sparc fusion reactor design make it seem likely to work. Unlike some other fusion reactor designs, Sparc uses high-temperature superconductors which are capable of much stronger magnetic fields in a more closely-confined location. Sparc will be much smaller than large-scale international project ITER, which after multiple delays is now not scheduled to even start fusion…

Researchers work to create a roadmap on quantum materials

The term ‘quantum materials’ was introduced to highlight the exotic properties of unconventional superconductors, heavy-fermion systems (materials with unusual electronic and magnetic properties) and multifunctional oxides. More recently, the definition has broadened to cover all the materials that allow scientists and engineers to explore emergent quantum phenomena and their potential applications. …

The Hall effect links superconductivity and quantum criticality in a strange metal

Over the past few decades, researchers have identified a number of superconducting materials with atypical properties, known as unconventional superconductors. Many of these superconductors share the same anomalous charge transport properties and are thus collectively characterized as “strange metals.” …

Quantum hall effect ‘reincarnated’ in 3-D topological materials

U.S. and German physicists have found surprising evidence that one of the most famous phenomena in modern physics—the quantum Hall effect—is “reincarnated” in topological superconductors that could be used to build fault-tolerant quantum computers. …

Imaging nematic transitions in iron pnictide superconductors

Researchers at Stanford University have recently carried out an in-depth study of nematic transitions in iron pnictide superconductors. Their paper, published in Nature Physics, presents new imaging data of these transitions collected using a microscope they invented, dubbed the scanning quantum cryogenic atom microscope (SQCRAMscope). …

Scientists tap into AI to put a new spin on neutron experiments

Scientists seek to use quantum materials—those that have correlated order at the subatomic level—for electronic devices, quantum computers, and superconductors. Quantum materials owe many of their properties to the physics that is occurring on the smallest scales, physics that is fully quantum mechanical. …