Elementary particles part ways with their properties

“Spooky action at a distance,” Einstein’s summation of quantum physics, has been a criticism of quantum mechanics since the field emerged. So far, descriptions of entangled particles to explain their apparently faster-than-light responses, and even explanations for the phase shifts induced by an electromagnetic field in regions where it is zero—the “Aharonov-Bohm” effect—have mostly addressed these concerns. However, recent theoretical and…

Unprecedented accuracy in quantum electrodynamics: Giant leap toward solving proton charge radius puzzle

Physicists at the Max Planck Institute of Quantum Optics have tested quantum mechanics to a completely new level of precision using hydrogen spectroscopy, and in doing so they came much closer to solving the well-known proton charge radius puzzle. …

Quantifying quantumness: A mathematical project ‘of immense beauty’

Large objects, such as baseballs, vehicles, and planets, behave in accordance with the classical laws of mechanics formulated by Sir Isaac Newton. Small ones, such as atoms and subatomic particles, are governed by quantum mechanics, where an object can behave as both a wave and a particle. …

In new step toward quantum tech, scientists synthesize ‘bright’ quantum bits

With their ability to harness the strange powers of quantum mechanics, qubits are the basis for potentially world-changing technologies—like powerful new types of computers or ultra-precise sensors. …

Explaining gravity without string theory

For decades, most physicists have agreed that string theory is the missing link between Einstein’s theory of general relativity, describing the laws of nature at the largest scale, and quantum mechanics, describing them at the smallest scale. However, an international collaboration headed by Radboud physicists has now provided compelling evidence that string theory is not the only theory that could form…

Weak equivalence principle violated in gravitational waves

The Weak equivalence principle (WEP) is a key aspect of classical physics. It states that when particles are in freefall, the trajectories they follow are entirely independent of their masses. However, it is not yet clear whether this property also applies within the more complex field of quantum mechanics. In new research published in EPJ C, James Quach at the University…

Timekeeping theory combines quantum clocks and Einstein’s relativity

A phenomenon of quantum mechanics known as superposition can impact timekeeping in high-precision clocks, according to a theoretical study from Dartmouth College, Saint Anselm College and Santa Clara University. …

A new interpretation of quantum mechanics suggests that reality does not depend on the person measuring it

Quantum mechanics arose in the 1920s, and since then scientists have disagreed on how best to interpret it. Many interpretations, including the Copenhagen interpretation presented by Niels Bohr and Werner Heisenberg, and in particular, von Neumann-Wigner interpretation, state that the consciousness of the person conducting the test affects its result. On the other hand, Karl Popper and Albert Einstein thought that…

For the First Time Ever, Scientists Caught Time Crystals Interacting

An anonymous reader quotes a report from Popular Mechanics: For the first time, scientists have observed an interaction of a rare and baffling form of matter called time crystals. The crystals look at a glance like “regular” crystals, but they have a relationship to time that both intrigues and puzzles scientists because of its unpredictability. Now, experts say they could have…

CERN meets quantum technology

Today’s information and communication technology grew out of the invention and development of quantum mechanics during the last century. But, nifty as it is that billions of transistors can be packed into your smartphone or that photons are routed around the internet with the help of lasers, the devices underpinning the “first quantum revolution” merely rely on the weird properties of…