Improving quantum dot interactions, one layer at a time

Osaka City University scientists and colleagues in Japan have found a way to control an interaction between quantum dots that could greatly improve charge transport, leading to more efficient solar cells. Their findings were published in the journal Nature Communications. …

Novel quantum dots facilitate coupling to quantum memory systems

Researchers at the University of Basel and Ruhr-Universität Bochum have realized quantum dots—tiny semiconductor nanostructures—that emit light close to the red part of the spectrum with ultra-low background noise. Quantum dots might one day constitute the basis for quantum computers; the light particles, also called photons, would then serve as information carriers. Quantum dots with adequate optical properties had previously only…

Scientists manipulate the properties of quantum dots

Scientists at the National Research Nuclear University MEPhI (MEPhI) have demonstrated an increase in the intensity and emission rate of quantum dots. According to the authors of the study, the development could help to solve one of the key problems in creating a quantum computer and elevate biomedical monitoring to a new level. The research results were published in Optics Express….

Tiny bubbles make a quantum leap

July 13, 2020—Researchers at Columbia Engineering and Montana State University report today that they have found that placing sufficient strain in a 2-D material—tungsten diselenide (WSe2)—creates localized states that can yield single-photon emitters. Using sophisticated optical microscopy techniques developed at Columbia over the past three years, the team was able to directly image these states for the first time, revealing that…

Scientists create new device to light up the way for quantum technologies

Researchers at CRANN and Trinity’s School of Physics have created an innovative new device that will emit single particles of light, or photons, from quantum dots that are the key to practical quantum computers, quantum communications, and other quantum devices. …

Team obtained high-level control of spin qubit lifetime based on silicon quantum dots

By tuning the direction of the external magnetic field with respect to the crystallographic axis of the silicon wafer, an improvement of spin lifetime (relaxation time) by over two orders of magnitude was reported in silicon quantum dots. This breakthrough was carried out by a team led by academician Guo Guangcan from CAS Key Laboratory of Quantum Information, USTC, in which…

Coupled quantum dots may offer a new way to store quantum information

Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots—tiny islands of confined electric charge that act like interacting artificial atoms. Such “coupled” quantum dots could serve as a robust quantum bit, or qubit, the fundamental unit of information for a quantum computer. Moreover,…

Colloidal quantum dot laser diodes are just around the corner

Los Alamos scientists have incorporated meticulously engineered colloidal quantum dots into a new type of light emitting diodes (LEDs) containing an integrated optical resonator, which allows them to function as lasers. These novel, dual-function devices clear the path towards versatile, manufacturing-friendly laser diodes. The technology can potentially revolutionize numerous fields from photonics and optoelectronics to chemical sensing and medical diagnostics. …

Ultrafast stimulated emission microscopy of single nanocrystals

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished. Ultrafast microscopy studies entirely rely on detecting nanoparticles or…