Researchers make steps toward debugging tools for quantum computers

In classical computing, debugging programs is one of the most time-consuming tasks in software development. Successful debugging relies on software development tools and also on the experience of the programmer. In quantum computing, researchers predict debugging will be an even greater challenge. In a paper soon to appear at the ACM/IEEE 46th Annual International Symposium for Computer Architecture (as part of…

Researchers demonstrate new path to reliable quantum computation

Researchers at the University of Chicago published a novel technique for improving the reliability of quantum computers by accessing higher energy levels than traditionally considered. Most prior work in quantum computation deals with “qubits,” the quantum analogue of binary bits that encode either zero or one. The new work instead leverages “qutrits,” quantum analogues of three-level trits capable of representing zero,…

Perfect quantum portal emerges at exotic interface

Researchers at the University of Maryland have captured the most direct evidence to date of a quantum quirk that allows particles to tunnel through a barrier like it’s not even there. The result, featured on the cover of the June 20, 2019 issue of the journal Nature, may enable engineers to design more uniform components for future quantum computers, quantum sensors…

A sound idea: A step towards quantum computing

A team at the University of Tsukuba studied a novel process for creating coherent lattice waves inside silicon crystals using ultrashort laser pulses. Using theoretical calculations combined with experimental results that were obtained at the University of Pittsburgh, they were able to show that coherent vibrational signals could be maintained inside the samples. This research may lead to quantum computers based…

What Would Happen If All Encryption Could Be Broken?

“What would happen, or what should happen, if tomorrow a trivial method was discovered for Prime Factorization?” asks Slashdot reader medv4380: By trivial I mean an algorithm that runs in relatively constant time that could factor a number like 2737631357921793461914298938174501291 relatively instantly on most modern hardware today. And that even increasing the bit length wouldn’t slow it down much. How much…

A leap into the continuum

Computing the dynamics of many interacting quantum particles accurately is a daunting task. There is however a promising calculation method for such systems: tensor networks, which are being researched in the theory division at the Max Planck Institute of Quantum Optics. The initial focus of tensor network was on quantum particles restricted to a lattice, just as they occur in crystals…