Quantum communication: making two from one

In the future, quantum physics could become the guarantor of secure information technology. To achieve this, individual particles of light—photons—are used for secure transmission of data. Findings by physicists from the Max Planck Institute for Solid State Research could play a key role. The researchers accidentally came across a light source that generates a photon pair from the energy of an…

A method to determine magnon coherence in solid-state devices

A team of researchers at Utrecht University, the Norwegian University of Science and Technology and the University of Konstanz has recently proposed a new method to determine magnon coherence in solid-state devices. Their study, outlined in a paper published in Physical Review Letters , shows that cross-correlations of pure spin currents injected by a ferromagnet into two metal leads normalized by…

Exploring the scientific potential of the ATLAS Experiment at the High-Luminosity LHC

The High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) is scheduled to begin colliding protons in 2026. This major improvement to CERN’s flagship accelerator will increase the total number of collisions in the ATLAS experiment by a factor of 10. To cope with this increase, ATLAS is preparing a complex series of upgrades including the installation of new detectors using state-of-the-art…

New material also reveals new quasiparticles

Researchers at PSI have investigated a novel crystalline material that exhibits electronic properties that have never been seen before. It is a crystal of aluminum and platinum atoms arranged in a special way. In the symmetrically repeating unit cells of this crystal, individual atoms were offset from each other in such a way that they—as connected in the mind’s eye—followed the…

Three teams independently show dipolar quantum gasses support state of supersolid properties

Three teams of researchers working independently of one another have shown that certain dipolar quantum gases are able to support a state of supersolid properties. A team led by Giovanni Modugno of the University of Florence has published their findings in Physical Review Letters. The second team, led by Tilman Pfau of the University of… Continue reading Three teams independently show dipolar quantum gasses support state of supersolid properties