Realizing kagome spin ice in a frustrated intermetallic compound

Exotic phases of matter known as spin ices are defined by frustrated spins that obey local “ice rules”—similar to electric dipoles in water ice. Physicists can define ice rules in two-dimensions for in-plane Ising-like spins arranged on a kagome lattice. The ice rules can lead to diverse orders and excitations. In a new report on Science, Kan Zhao and a team in experimental physics, crystallography, and materials and engineering in Germany, the U.S. and the Czech Republic used experimental and theoretical approaches including magnetometry, thermodynamics, neutron scattering and Monte Carlo simulations to establish the HoAgGe crystal as a crystalline system to realize the exotic kagome spin ice state. The setup featured a variety of partially and fully ordered states as well as field-induced phases at low temperatures consistent with the kagome experimental requisites.

Source:
https://phys.org/news/2020-03-kagome-ice-frustrated-intermetallic-compound.html