Extending electron paramagnetic resonance (EPR) spectroscopy to nanoliter volume protein single crystals

Biochemists can use electron paramagnetic resonance (EPR) on protein single crystals to determine the ultimate electronic structure of paramagnetic protein intermediates and investigate the relative magnetic tensor to a molecular structure. The method is, however, withheld by typical protein crystal dimensions (0.05 to 0.3 mm) that do not provide sufficient signal intensity during protein crystallography. In a new study on Science Advances, Jason W. Sidabras and an interdisciplinary research team in the departments of Chemical Energy Conversion, Photobiotechnology, Institute for Biology and Experimental Physics in Germany presented a microwave self-resonant microhelix to quantify nanoliter samples. The scientists implemented the technique in a commercial X-band (mid-range frequency; 9.5 GHz) EPR spectrometer. The self-resonant microhelix provided a measured signal-to-noise improvement compared to other commercial EPR resonators. The work enables advanced EPR techniques to study protein single crystals for X-ray crystallography, without size-related exclusions or challenges. To demonstrate the method, Sidabras et al. used single crystal protein [FeFe]-hydrogenase (from Clostridium pasteurianum) with 0.3 mm by 0.1 mm by 0.1 mm dimensions.

Source:
https://phys.org/news/2019-11-electron-paramagnetic-resonance-epr-spectroscopy.html