Turning an organic molecule into a coherent two-level quantum system

Researchers at Max Planck Institute for the Science of Light and Friedrich Alexander University in Erlangen, Germany have recently demonstrated that a molecule can be turned into a coherent two-level quantum system. In their study, published in Nature Physics, they placed an organic molecule inside an optical microcavity and found that it behaved as a… Continue reading Turning an organic molecule into a coherent two-level quantum system

Researchers measure near-perfect performance in low-cost semiconductors

Tiny, easy-to-produce particles, called quantum dots, may soon take the place of more expensive single crystal semiconductors in advanced electronics found in solar panels, camera sensors and medical imaging tools. Although quantum dots have begun to break into the consumer market—in the form of quantum dot TVs—they have been hampered by long-standing uncertainties about their… Continue reading Researchers measure near-perfect performance in low-cost semiconductors

Long-distance quantum information exchange—success at the nanoscale

At the Niels Bohr Institute, University of Copenhagen, researchers have realized the swap of electron spins between distant quantum dots. The discovery brings us a step closer to future applications of quantum information, as the tiny dots have to leave enough room on the microchip for delicate control electrodes. The distance between the dots has… Continue reading Long-distance quantum information exchange—success at the nanoscale

Quantum sensing method measures minuscule magnetic fields

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping the electrical impulses inside a firing neuron, characterizing new magnetic materials, and probing exotic quantum physical… Continue reading Quantum sensing method measures minuscule magnetic fields

Exploring the behavior of a gas as it transitions between quantum and classical states

A team of researchers from the MIT-Harvard Center for Ultracold Atoms has developed a way to study and measure gases as they transition between quantum and classical states due to changes in temperature. In their paper published in the journal Physical Review Letters, the group describes experiments they carried out with clouds of lithium-6 atoms… Continue reading Exploring the behavior of a gas as it transitions between quantum and classical states

Researchers put machine learning on path to quantum advantage

There are high hopes that quantum computing’s tremendous processing power will someday unleash exponential advances in artificial intelligence. AI systems thrive when the machine learning algorithms used to train them are given massive amounts of data to ingest, classify and analyze. The more precisely that data can be classified according to specific characteristics, or features,… Continue reading Researchers put machine learning on path to quantum advantage

Testing the symmetry of space-time by means of atomic clocks

In his Special Theory of Relativity, Einstein formulated the hypothesis according to which the speed of light is always the same, no matter what the conditions are. It may, however, be possible that—according to theoretical models of quantum gravitation—this uniformity of space-time does not apply to particles. Physicists have now tested this hypothesis with a… Continue reading Testing the symmetry of space-time by means of atomic clocks

Quantum-critical conductivity of the Dirac fluid in graphene

Graphene is expected to behave like a quantum-critical, relativistic plasma known as “Dirac fluid” near charge neutrality in which massless electrons and holes rapidly collide. In a recent study now published in Science, Patrick Gallagher and co-workers at the departments of physics and materials science in the U.S., Taiwan, China and Japan used on-chip terahertz… Continue reading Quantum-critical conductivity of the Dirac fluid in graphene