Researchers use noise data to increase reliability of quantum computers

A new technique by researchers at Princeton University, University of Chicago and IBM significantly improves the reliability of quantum computers by harnessing data about the noisiness of operations on real hardware. In a paper presented this week, researchers describe a novel compilation method that boosts the ability of resource-constrained and “noisy” quantum computers to produce useful answers. Notably, the researchers…

Direct imaging of active orbitals in quantum materials

In quantum materials based on transition metals, rare-earth and actinide elements, electronic states are characterized by electrons in orbitals d and f, combined with the solid’s strong band formation. Until now, to estimate the specific orbitals that contribute to the ground state of these materials and determine their physical properties, researchers have primarily relied on theoretical calculations and spectroscopy methods….

Seven common myths about quantum physics

I have been popularising quantum physics, my area of research, for many years now. The general public finds the topic fascinating and covers of books and magazines often draw on its mystery. A number of misconceptions have arisen in this area of physics and my purpose here is to look at the facts to debunk… Continue reading Seven common myths about quantum physics

Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers. These problems are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach using quantum devices available today. Source: https://phys.org/news/2019-04-quantum-simulation-stable.html

Research provides speed boost to quantum computers

A new finding by researchers at the University of Chicago promises to improve the speed and reliability of current and next generation quantum computers by as much as ten times. By combining principles from physics and computer science, the researchers developed a new scalable compiler that makes software aware of the underlying quantum hardware, offering… Continue reading Research provides speed boost to quantum computers

Infinite number of quantum particles gives clues to big-picture behavior at large scale

In quantum mechanics, the Heisenberg uncertainty principle prevents an external observer from measuring both the position and speed (referred to as momentum) of a particle at the same time. They can only know with a high degree of certainty either one or the other—unlike what happens at large scales where both are known. To identify… Continue reading Infinite number of quantum particles gives clues to big-picture behavior at large scale

Fluc­tu­a­tions in the void

In quantum physics, a vacuum is not empty, but rather steeped in tiny fluctuations of the electromagnetic field. Until recently it was impossible to study those vacuum fluctuations directly. Researchers at ETH Zurich have developed a method that allows them to characterize the fluctuations in detail. Source: https://phys.org/news/2019-04-fluctuations-void.html

New algorithm optimizes quantum computing problem-solving

Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports. Source: https://phys.org/news/2019-04-algorithm-optimizes-quantum-problem-solving.html

Scientists build a machine to generate quantum superposition of possible futures

In the 2018 movie Avengers: Infinity War, a scene featured Dr. Strange looking into 14 million possible futures to search for a single timeline in which the heroes would be victorious. Perhaps he would have had an easier time with help from a quantum computer. A team of researchers from Nanyang Technological University, Singapore (NTU… Continue reading Scientists build a machine to generate quantum superposition of possible futures

Scientists build a machine to quantum superposition of possible futures

In the 2018 movie Avengers: Infinity War, a scene featured Dr. Strange looking into 14 million possible futures to search for a single timeline in which the heroes would be victorious. Perhaps he would have had an easier time with help from a quantum computer. A team of researchers from Nanyang Technological University, Singapore (NTU… Continue reading Scientists build a machine to quantum superposition of possible futures